曲媛媛

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:环境学院B617室

联系方式:0411-84706250

电子邮箱:qyy@dlut.edu.cn

扫描关注

论文成果

当前位置: 曲媛媛 >> 科学研究 >> 论文成果

Multistep Conversion of para-Substituted Phenols by Phenol Hydroxylase and 2,3-Dihydroxybiphenyl 1,2-Dioxygenase

点击次数:

论文类型:期刊论文

发表时间:2013-04-01

发表刊物:APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY

收录刊物:SCIE、EI、PubMed、Scopus

卷号:169

期号:7

页面范围:2064-2075

ISSN号:0273-2289

关键字:Multistep conversion; para-Substituted phenols; Phenol hydroxylase; 2,3-Dihydroxybiphenyl 1,2-dioxygenase; Docking study

摘要:A multistep conversion system of para-substituted phenols by recombinant phenol hydroxylase (PHIND) and 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC(LA-4)) was constructed in this study. Docking studies with different para-substituted phenols and corresponding catechols inside of the active site of PHIND and BphC(LA-4) predicted that all the substrates should be transformed. High-performance liquid chromatography-mass spectrometry analysis showed that the products of multistep conversion were the corresponding para-substituted catechols and semialdehydes. For the first-step conversion, the formation rate of 4-fluorocatechol (0.39 mu M/min/mg dry weight) by strain PHIND hydroxylation was 1.15, 6.50, 3.00, and 1.18-fold higher than the formation of 4-chlorocatechol, 4-bromocatechol, 4-nitrocatechol, and 4-methylcatechol, respectively. For the second-step conversion, the formation rates of semialdehydes by strain BphC(LA-4) were as follows: 5-fluoro-HODA > 5-chloro-HODA > 2-hydroxy-5-nitro-ODA > 5-bromo-HODA > 2-hydroxy-5-methyl-ODA. The present study suggested that the multistep conversion by both ring hydroxylase and cleavage dioxygenase should be potential in the synthesis of industrial precursors and provide a novel avenue in the wastewater recycling treatment.