个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术
办公地点:创新园大厦A826
联系方式:rjk@dlut.edu.cn
电子邮箱:rjk@dlut.edu.cn
Maximizing Charging Utility with Obstacles through Fresnel Diffraction Model
点击次数:
论文类型:会议论文
发表时间:2021-03-16
页面范围:2046-2055
摘要:Benefitting from the recent breakthrough of wireless power transfer technology, Wireless Rechargeable Sensor Networks (WRSNs) have become an important research topic. Most prior arts focus on system performance enhancement in an ideal environment that ignores impacts of obstacles. This contradicts with practical applications in which obstacles can be found almost anywhere and have dramatic impacts on energy transmission. In this paper, we concentrate on the problem of charging a practical WRSN in the presence of obstacles to maximize the charging utility under specific energy constraints. First, we propose a new theoretical charging model with obstacles based on Fresnel diffraction model, and conduct experiments to verify its effectiveness. Then, we propose a spatial discretization scheme to obtain a finite feasible charging position set for MC, which largely reduces computation overhead. Afterwards, we reformalize charging utility maximization with energy constraints as a submodular function maximization problem and propose a cost-efficient algorithm with approximation ratio (e - 1)/2e (1 - epsilon) to solve it. Lastly, we demonstrate that our scheme outperforms other algorithms by at least 14.8% in terms of charging utility through test-bed experiments and extensive simulations.