任明法

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:机械工程学院

学科:工程力学. 固体力学. 航空航天力学与工程. 应用与实验力学. 机械制造及其自动化. 机械设计及理论. 车辆工程. 工业工程

电子邮箱:renmf@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite

点击次数:

论文类型:期刊论文

发表时间:2020-08-01

发表刊物:COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING

收录刊物:SCIE

卷号:135

ISSN号:1359-835X

关键字:3-Dimensional reinforcement; Residual/internal stress; Process Simulation; Process monitoring

摘要:The process-induced residual strain and stress have a significant impact on the forming quality and service performance of 3D woven composites (3DWC). A multiscale model of 3DWC is developed to predict the residual strain and stress after the manufacturing process. Representative volume element at fiber scale and yarn scale are developed according to the geometric characteristics of 3DWC, and the modulus-development model is developed with respect to finite element based micromechanics method. An equivalent temperature load method is proposed to develop the cure shrinkage strain model. A thermal-chemical-mechanical coupling analysis of 3DWC curing process is carried out by integrating the abovementioned models, and the evolutions of temperature, degree of cure and residual strain/stress are obtained. Fiber Bragg Grating sensors are hybridized into the fabrics before Resin Transfer Molding (RTM) processing. The signal from sensors during RTM shows that the residual strain evolution is in good agreement with our modeling prediction.