个人信息Personal Information
副研究员
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
学科:材料学. 高分子材料. 材料加工工程
办公地点:汽车学院东山实验室
A303
电子邮箱:sanglin@dlut.edu.cn
Synthesis and characterization of poly(E >-caprolactone)/Fe(3)o(4) nanocomposites by in situ polymerization
点击次数:
论文类型:期刊论文
发表时间:2013-07-01
发表刊物:CHINESE JOURNAL OF POLYMER SCIENCE
收录刊物:ISTIC、SCIE
卷号:31
期号:7
页面范围:1011-1021
ISSN号:0256-7679
关键字:Poly(epsilon-caprolactone); Fe3O4; Nanocomposites; In situ polymerization
摘要:A series of magnetic nanocomposites based on poly(E >-caprolactone) (PCL) and Fe3O4 nanoparticles were prepared using a facile in situ polymerization method. The chemical structures of the PCL/Fe3O4 nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. Results of wide-angle X-ray diffraction (WAXD) showed that the incorporation of the Fe3O4 nanoparticles did not affect the crystallization structure of the PCL. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology and dispersion of the Fe3O4 nanoparticles within the as-synthesized nanocomposites. Results of differential scanning calorimetry (DSC) and polarizing optical microscopy (POM) showed that the crystallization temperature was raised and the spherulites size decreased by the presence of Fe3O4 nanoparticles in the nanocomposites due to the heterogeneous nucleation effect. The thermal stability of the PCL was depressed by incorporation of Fe3O4 nanoparticles from thermogravimetric analysis (TGA). The superparamagnetic behavior of the PCL/Fe3O4 nanocomposites was testified by the superconducting quantum interference device (SQUID) magnetometer analysis. The obtained biodegradable nanocomposites will have a great potential in magnetic resonance imaging contrast and targeted drug delivery.