王胜法

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算机应用技术. 计算数学

办公地点:信息楼317

联系方式:0411-62274427 250066715@qq.com

电子邮箱:sfwang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Encoding the Models with Object-aware Feature Basis: A New Analytical Tool for Graphic Applications

点击次数:

论文类型:会议论文

发表时间:2018-01-01

收录刊物:CPCI-S、EI

页面范围:305-310

关键字:feature analysis; non-negative matrix factorization; base function; correspondence

摘要:Feature space analysis is always the most central problem in all kinds of graphic applications, and the acquirement of different kinds of basis for feature space has never been stopped. In this paper, we propose a novel way to analyze the feature space by factorizing it into visually reasonable and physically meaningful basis and corresponding encoders (coefficients). Non-negative matrix factorization (NMF) has previously been shown to be powerful in information retrieval, computer vision and pattern recognition for its physically soundable and additive fashion. By transferring the factorization idea onto tasks of graphic applications, in this paper, we propose a framework for generating new feature basis and encoders for further analysis, which helps empower the downstream graphic applications, including analysis on one single model and joint analysis on a couple of models. Instead of factorizing the matrix composed of images or graphic elements/objects, we propose to apply sparse and -constrained NMF (SAC-NMF) to the feature space that is more general and extendable. And by designing various feature descriptors, we get the base functions for the feature space to enable the analysis of one single model and co-analysis of a list of models. Through the extensive experiments, our analytical framework has exhibited many attractive advantages such as being object-aware, robust, discriminative, extendable, etc.