个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
办公地点:三束实验室新楼302房间
电子邮箱:ebeam@dlut.edu.cn
Simulation of temperature field and melting depth of an Y2O3-stabilized ZrO2 thermal barrier coating sealed by high-current pulsed electron beam
点击次数:
论文类型:期刊论文
发表时间:2011-08-25
发表刊物:SURFACE & COATINGS TECHNOLOGY
收录刊物:SCIE、EI
卷号:205
期号:21-22
页面范围:4956-4959
ISSN号:0257-8972
关键字:High current pulsed electron beam; Y2O3-stabilized ZrO2 thermal barrier coating; Temperature field; Simulation
摘要:High-current pulsed electron beam is a promising technique for surface sealing of initially rough and porous Y2O3-stabilized ZrO2 (YSZ) thermal barrier ceramic coatings. Due to the rapid remelting and solidification, the outer layer of the ceramic coating becomes smooth, dense and corrosion resistant such that the protective performance for turbine blades is enhanced. Because of the complex multi-layered structures, the high-current pulsed electron beam treatment requires specific parameter inputs which are related to the temperature fields induced by the electron energy deposition in the coatings. In the present work, a two-dimensional temperature field simulation is conducted to describe the temperature response and distribution in an Y2O3-stabilized ZrO2 ceramic coating treated by high-current pulsed electron beam. The simulation reveals that the melting layer reaches a few micrometers in depth, and in particular at the pulse duration of 120 mu s and the deposition energy density of 15 J/cm(2), the calculated melting depth of 4.4 mu m is good agreement with the experimental results. The heating rate is up to 10(7)-10(8) Ks(-1) and the temperature gradient is about 10(9) Km(-1), It is pointed out that the ideal energy densities should be about 5-13 J/cm(2) at a pulse duration of 200 mu s to seal the ceramic surface. (C) 2011 Elsevier B.V. All rights reserved.