Hits:
Indexed by:Journal Papers
Date of Publication:2015-07-21
Journal:SCIENTIFIC REPORTS
Included Journals:SCIE、PubMed、Scopus
Volume:5
Page Number:11082
ISSN No.:2045-2322
Abstract:Cathelicidins are short cationic host defense peptides and play a central role in host innate immune system. Here we identified two novel cathelicidins, CI-CATH2 and 3, from Columba livia. Evolutionary analysis of avian cathelicidins via phylogenetic tree and K alpha/Ks calculations supported the positive selection that prompted evolution of CATH2 to CATH2 and 3, which originate from common ancestor and could belong to one superfamily. CI-CATH2 and 3 both adopt amphipathic et-helical comformations identified by circular dichroism and the 3D structures built by Rosetta. CI-CATH2 of CATH2 family with the most expression abundance in bird, exhibited relatively weak antimicrobial activity, but acted instead on the innate immune response without showing undesirable toxicities. In macrophages primed by LPS, CI-CATH2 significantly down-regulated the gene and protein expressions of inducible nitric oxide synthase and pro-inflammatory cytokines while enhancing the anti-inflammatory cytokine, acting through MAPK and NF-KB signaling pathways. Molecular docking shows for the first time that cathelicidin binds to the opening region of LPS-binding pocket on myeloid differentiation factor 2 (MD-2) of toll-like receptor (TLR)4-MD-2 complex, which in turn inhibits the TLR4 pathway. Our results, therefore, provide new insight into the mechanism underlying the blockade of TLR4 signaling by cathelicidins.