个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:哈尔滨工业大学
学位:硕士
所在单位:能源与动力学院
学科:制冷及低温工程
电子邮箱:slquan@dlut.edu.cn
3D numerical study of the liquid film distribution on the surface of a horizontal-tube falling-film evaporator
点击次数:
论文类型:期刊论文
发表时间:2018-09-01
发表刊物:INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
收录刊物:SCIE、EI
卷号:124
页面范围:943-952
ISSN号:0017-9310
关键字:Horizontal-tube falling-film; Inline jet flow; Staggered jet flow; Flow pattern transformation; Liquid film distribution
摘要:In this paper, the volume-of-fluid (VOF) model is adopted to simulate the distribution and flow of a liquid film on the outer surface of the horizontal tube of a falling-film evaporator. The plain tube diameter and the spray distance are 25.4 and 22 mm respectively. The temporal variation characteristics of inline jet flow, the adjacent liquid column, and the steady-state film thickness distribution over the horizontal tubes are analyzed. To better compare with the experimental results, two kinds of numerical simulation medium, water and ethylene glycol, are chosen. The results of the 3-D numerical simulations and experiment are in good agreement. The results show that the jet flow can be divided into inline jet flow and staggered jet flow. Furthermore, a trough forms between the adjacent liquid columns under inline jet flow, whereas a crest forms between the adjacent liquid columns under staggered jet flow. In addition, the liquid viscosity is a crucial factor affecting the spreading of the liquid film. The appearance of the crest between adjacent liquid columns results in staggered jet flow. (C) 2018 Elsevier Ltd. All rights reserved.