个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:能源与动力学院
学科:能源与环境工程
办公地点:能动大楼810
联系方式:songyc@dlut.edu.cn
电子邮箱:songyc@dlut.edu.cn
The fate of CO2 bubble leaked from seabed
点击次数:
论文类型:会议论文
发表时间:2008-11-16
收录刊物:EI、CPCI-S
卷号:1
期号:1
页面范围:4969-4976
关键字:CO2; Droplet/Bubble; Dissolusion; Momentum changes; Modeling
摘要:A numerical model of an individual CO2 bubble dissolution and ascent in shallow seawater was developed to simulate the fate of CO2 leaked from seabed naturally or artificially. The model consists of a solubility sub-model of CO2 gas in seawater, a CO2 bubble mass transfer sub-model, and a CO2 bubble momentum transfer sub-model. The model is applied to predict the dynamics of leaked CO2 in seawater at various depths from 0-150m (temperature from 10 degrees C to 25 degrees C) and for initial bubble sizes from 3.0 to 40.0mm in diameter. A diagram of CO2 ascending distance vs dissolution time is obtained from model simulations. It is found that CO2 bubbles ascend at a mean speed of 16 cm/sec and a mean shrinking rate of 30x10(-3) mm/s in diameter approximately if leaked from a shallow ocean (<150m) seabed. A parameter, named as critical depth, is defined and suggested as a parameter to indicate if the CO2 leaked from seabed can return to atmosphere. This critical depth is approximately linearly related to the initial bobble size with a gradient of -0.68 m/mm under seawater conditions in the simulation ocean. (C) 2008 Elsevier Ltd. All rights reserved