宋永臣

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:能源与动力学院

学科:能源与环境工程

办公地点:能动大楼810

联系方式:songyc@dlut.edu.cn

电子邮箱:songyc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Effects of additives on continuous hydrate-based flue gas separation

点击次数:

论文类型:期刊论文

发表时间:2018-07-01

发表刊物:APPLIED ENERGY

收录刊物:SCIE、EI、CPCI-S、Scopus

卷号:221

页面范围:374-385

ISSN号:0306-2619

关键字:Hydrate-based gas separation; Carbon dioxide hydrate; Additives; Continuous experimental process; Solution movement

摘要:CO2 capture from fossil fuel power plants is the main method of CO2 storage. Hydrate-based gas separation is regarded as a potential method for CO2 capture from flue gas. In this study, hydrate-based gas separation (HBGS) was used to capture CO2 from flue gas (19.96 mol% CO2 and 80.04 mol% N-2), and the continuous experimental process was monitored using magnetic resonance imaging (MRI). The effects of two additives (5 vet% TBAB + 5 wt% TFIF and 19 wt% THF), two gas injection methods (constant pressure and constant flow rate processes), and of different pressures and flow rates on the hydrate saturation and solution movement were investigated. The results show that both additives effectively promote hydrate formation. The constant pressure process was superior to the constant flow rate process for hydrate formation. Furthermore, the flow rate had little influence on the hydrate saturation. The process was most efficient when a hydrate formation stage time of approximately 80 min was used. The solution movement resulting from the continuous multiple cycles tended to decrease during subsequent cycles. Moreover, the addition of 19 wt% THF had a more obvious effect on the solution movement than 5 wt% TBAB + 5 wt% THF. Solution concentration phenomena were observed in the presence of 19 wt% THF at 285.15 K; these phenomena may have been affected by the formation and dissociation of hydrates. Due to solution movement during the continuous industrial hydrate-based gas separation process, the solution might need to be replenished. Finally, in terms of the resulting the hydrate saturation, the use of 5 wt% TBAB + 5 wt% THF was found to be more suitable in this study, while the 19 wt% THF was more suitable for a higher experimental temperature.