宋永臣

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:能源与动力学院

学科:能源与环境工程

办公地点:能动大楼810

联系方式:songyc@dlut.edu.cn

电子邮箱:songyc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Kinetic enhancement of capturing and storing greenhouse gas and volatile organic compound: Micro-mechanism and micro-structure of hydrate growth

点击次数:

论文类型:期刊论文

发表时间:2020-01-01

发表刊物:CHEMICAL ENGINEERING JOURNAL

收录刊物:EI、SCIE

卷号:379

ISSN号:1385-8947

关键字:CO2 capture; Volatile organic compound capture; Crystal hydrate growth; Microstructural features; Dynamic enhancement

摘要:The use of hydrate-based technology for gas capture and storage is highly attractive for environmental mitigation, as it entails low energy penalties and provides gas storage density maximization and long-term storage stability. Although this method has been investigated in extensive researches, its development is restricted by the obscure underlying gas capture micro-mechanisms, elusive micro-structures of stored forms, and insufficient hydrate film growth rates. In this study, the Magnetic Resonance Imaging technique was employed to analyze the hydrate growth micro-processes for greenhouse gas (imitated by CO2, CH4, and various fractions of CO2-CH4 mixed gases) and volatile organic compound (simulated by C2H4 and C2H2 gases) capture and storage. The hydrate film growth was enhanced with the addition of 288 ppm sodium dodecyl sulfate (SDS), which significantly improved the hydrate growth in the cases of hydrocarbon gases, but not CO2 gas due to the competing adsorption of bicarbonate and dodecyl sulfate ions. With SDS, hydrocarbon gas hydrates grew via the patchy model at 65-105 mm/s, and 65-95% liquid water was converted into hydrates for gas capture and storage. However, only about 1.4% water was converted into CO2 hydrates with SDS, at 10.4 mm/s. Thus, a multi-pressure control mechanism for secondary hydrate growth was developed to promote CO2 capture and storage, based on a large amount of dissolved CO2 gas compared to the other investigated gases. The enhanced CO2 capture has important implications for the optimized harmful gas sequestration, due to preferentially patchy hydrate morphologies and associated impacts on permeability.