宋永臣

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:能源与动力学院

学科:能源与环境工程

办公地点:能动大楼810

联系方式:songyc@dlut.edu.cn

电子邮箱:songyc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Pore-scale visualization study on CO2 displacement of brine in micromodels with circular and square cross sections

点击次数:

论文类型:期刊论文

发表时间:2020-04-01

发表刊物:INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL

收录刊物:EI、SCIE

卷号:95

ISSN号:1750-5836

关键字:Micromodel; CO2-brine displacement; Cross section; Saturation; CO2 storage

摘要:CO2 sequestration into saline aquifers has been demonstrated as an effective technique to mitigate the effects of carbon dioxide on the atmosphere. The displacement mechanism during this process has not been clarified and the two-phase immiscible flow is affected by many factors. In this study, two types of homogeneous micromodels with circular and square cross sections were used to investigate the pore-scale of residual and capillary trapping at 25 degrees C and ambient pressure. Two salinities and six injection rates were used to study their impacts on CO2 saturation. Drainage experiments were conducted using a high-resolution microscope and a camera. The CO2 saturation and its distribution are investigated using image processing. Three forms of wetting phases are observed in circular grains, whereas additional special forms are observed in square grains, and these existing forms of the wetting phase are applied for mechanism analysis. Changes in the tortuosity and wettability are also analyzed to clarify why the saturation in the micromodel with square cross section was higher than that of circular cross section. The displacement pattern, the injection rate, the salinity, and the micromodel structure all have impacts on CO2 displacement efficiency and safe sequestration.