宋永臣

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:能源与动力学院

学科:能源与环境工程

办公地点:能动大楼810

联系方式:songyc@dlut.edu.cn

电子邮箱:songyc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hydrogen production from chemical looping steam reforming of glycerol by Ni-based oxygen carrier in a fixed-bed reactor

点击次数:

论文类型:期刊论文

发表时间:2015-11-15

发表刊物:CHEMICAL ENGINEERING JOURNAL

收录刊物:SCIE、EI、Scopus、ESI热点论文

卷号:280

页面范围:459-467

ISSN号:1385-8947

关键字:Renewable hydrogen; Biodiesel by-product glycerol; Ni-based oxygen carrier; Chemical looping steam reforming (CLSR)

摘要:Hydrogen production from chemical looping steam reforming (CLSR) of glycerol was studied by Ni-based oxygen carrier in a fixed-bed reactor. For the fixed-bed reactor configuration, solid Ni-based oxygen carrier is stationary and alternatively exposed to reducing and oxidizing conditions by periodically switching the feed gases. The Ni-based oxygen carrier was prepared by a liquid-state co-precipitation method with rising pH technique and the characterization was performed by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and N-2 adsorption-desorption. Gaseous products and temperature variety during CLSR process by Ni-based oxygen carrier in a fixed-bed reactor were measured, and the thermodynamic equilibrium calculation was also carried out. The results showed that the Ni-based oxygen carrier synthesized has a dual function and can efficiently convert glycerol and steam to H-2 by redox reactions. The coexisting reactions of glycerol oxidization (or NiO reduction) and steam reforming occurred before the steady stage of hydrogen production in the fuel feed step, and the conversion of NiO to Ni was obtained. Alternating reduction and oxidation reactions enabled Ni-based oxygen carrier to produce H-2 with a concentration of 85% of the equilibrium value at 600 degrees C, and glycerol conversion was up to 99%. The increase of temperature related to the exothermic reactions by Ni-based oxygen carrier in CLSR process was observed in redox cycles. (C) 2015 Elsevier B.V. All rights reserved.