宋永臣

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:能源与动力学院

学科:能源与环境工程

办公地点:能动大楼810

联系方式:songyc@dlut.edu.cn

电子邮箱:songyc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges

点击次数:

论文类型:期刊论文

发表时间:2014-02-01

发表刊物:RENEWABLE & SUSTAINABLE ENERGY REVIEWS

收录刊物:SCIE、EI、ESI高被引论文、Scopus

卷号:30

页面范围:950-960

ISSN号:1364-0321

关键字:Glycerol steam reforming; Sorption-enhanced steam reforming process (SERP); High-purity hydrogen; Catalyst; Sorbent for CO2 removal

摘要:The objective of this review is to analyze potential technologies and their baseline performance of producing hydrogen from catalytic steam reforming of biodiesel byproduct glycerol. High oxygen content and high impurity level of biodiesel byproduct glycerol, as well as the complex intermediates and high coking potential in its thermal degradation, make the modeling, design, and operation of glycerol steam reforming a challenge. Thermal decomposition characterization of biodiesel byproduct glycerol was covered, and the recent developments and methods for high-purity hydrogen production from glycerol steam reforming were illustrated. The thermodynamics constraint of water gas shift reaction can be overcome by the sorption-enhanced steam reforming process, which integrated catalytic steam reforming, water gas shift reaction and in-situ CO2 removal at high temperatures in a single stage reactor. The effectiveness of both the enhanced H-2 production and the use of CO2 sorbents have been demonstrated and discussed. The technical challenges to achieve a stable high-purity hydrogen production by the sorption-enhanced steam reforming process included extending operation time, selecting suitable sorbents, finding a way for continuous reaction-regeneration of catalyst and sorbent mixture and improving process efficiencies. The continuous sorption-enhanced steam reforming of glycerol was designed by a simultaneous flow concept of catalyst and sorbent for continuous reaction-regeneration using two slow moving-bed reactors for high-purity hydrogen production and CO2 capture, and in this process, catalyst and sorbent were run in nearly fresh state for H-2 production. The sorption-enhanced chemical-looping reforming was also demonstrated. The paper discusses some issues and challenges, along with the possible solutions in order to help in efficient production of hydrogen from catalytic steam reforming of biodiesel byproduct glycerol. (C) 2013 Elsevier Ltd. All rights reserved.