个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:能源与动力学院
学科:能源与环境工程
办公地点:能动大楼810
联系方式:songyc@dlut.edu.cn
电子邮箱:songyc@dlut.edu.cn
CO2 Hydrate Formation and Dissociation in Cooled Porous Media: A Potential Technology for CO2 Capture and Storage
点击次数:
论文类型:期刊论文
发表时间:2013-09-03
发表刊物:ENVIRONMENTAL SCIENCE & TECHNOLOGY
收录刊物:SCIE、EI、PubMed、PKU、ISTIC、Scopus
卷号:47
期号:17
页面范围:9739-9746
ISSN号:0013-936X
摘要:The purpose of this study was to investigate the hydrate formation and dissociation with CO2 flowing through cooled porous media at different flow rates, pressures, temperatures, and flow directions. CO2 hydrate saturation was quantified using the mean intensity of water. The experimental results showed that the hydrate block appeared frequently, and it could be avoided by stopping CO2 flooding early. Hydrate formed rapidly as the temperature was set to 274.15 or 275.15 K, but the hydrate formation delayed when it was 276.15 K. The flow rate was an important parameter for hydrate formation; a too high or too low rate was not suitable for CO2 hydration formation. A low operating pressure was also unacceptable. The gravity made hydrate form easily in the vertically upward flow direction. The pore water of the second cycle converted to hydrate more completely than that of the first cycle, which was a proof of the hydrate "memory effect". When the pressure was equal to atmospheric pressure, hydrate did not dissociate rapidly and abundantly, and a long time or reduplicate depressurization should be used in industrial application.