个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:能源与动力学院
学科:能源与环境工程
办公地点:能动大楼810
联系方式:songyc@dlut.edu.cn
电子邮箱:songyc@dlut.edu.cn
An experimental study on CO2/water displacement in porous media using high-resolution Magnetic Resonance Imaging
点击次数:
论文类型:期刊论文
发表时间:2012-09-01
发表刊物:INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
收录刊物:SCIE、EI、Scopus
卷号:10
页面范围:501-509
ISSN号:1750-5836
关键字:MRI; Porous media; Immiscible displacement; Miscible displacement; Displacement efficiency
摘要:CO2/water displacement process in porous media under sequestration conditions was observed using high-resolution Magnetic Resonance Imaging (MRI) technique. The porous media was a packed bed filled with glass beads. Fast spin echo multi slice sequence (FSEM) was used to measure the distribution of CO2 and water in the porous media. For immiscible displacement experiments, three stages were obtained from the MR signal intensity profile. The CO2 channeling or fingering phenomena was obviously for the difference of permeability during the second stage. The final water residual saturation depended on permeability, and lower permeability always leads to larger final saturation. For miscible displacement, the displacement process was also divided into three stages from MR signal intensity profile. The MR signal intensity decreased gradually for the resolving of CO2 into water in the first stage. A piston-like miscible front moved uniformly from the top to the bottom of the FOV (field of view) during the second stage, and the MR signal intensity decreased sharply. The displacement efficiency in miscible displacement is larger than that in immiscible displacement process. It is clear that water displacement efficiency or average CO2 saturation depends on flow rate. With the CO2 flow rate increasing, the relatively uniform CO2 distribution and the uniform CO2 front occurred. Additionally, final water saturation decreased. With the core analysis methods, the CO2 velocities were obtained, which were applied to evaluate the capillary dispersion rate, viscous dominated fraction flow and gravity flow function. The capillary dispersion rate donated the effects of capillary, which was largest at water saturations of 0.6 and 0.7. At a high flow rate, the viscous force was dominated over the porous media. When at a low flow rate, the gravity force became important and played a positive role in downward displacements. (c) 2012 Elsevier Ltd. All rights reserved.