个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:能源与动力学院
学科:能源与环境工程
办公地点:能动大楼810
联系方式:songyc@dlut.edu.cn
电子邮箱:songyc@dlut.edu.cn
Numerical Simulation and Analysis of Water Phase Effect on Methane Hydrate Dissociation by Depressurization
点击次数:
论文类型:期刊论文
发表时间:2012-02-22
发表刊物:INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
收录刊物:SCIE、EI、Scopus
卷号:51
期号:7
页面范围:3108-3118
ISSN号:0888-5885
摘要:The gas hydrate dissociation process is always accompanied by water production and water transfer, which may affect gas generation rate. In this study, in order to analyze the water phase effect in the process of dissociation in porous media, a two-dimensional (2-D) axisymmetric simulator is developed to model methane hydrate dissociation in porous media by depressurization. Mass transport, intrinsic kinetic reaction and energy conservation are included in the governing equations, which are discretized by finite difference method and are solved in the implicit pressure-explicit saturation (IMPES) method. Then, a series of simulations are performed to study the relationship among changes of water saturation, temperature, pressure and hydrate saturation in laboratory-scale methane dissociation by depressurization, water transfer in porous media for different outlet pressure and bath temperature, and the sensitivity analysis to water saturation. These results suggest that the front dissociation interface is wrapped in an area where water saturation is distributed in a gradient. As the water moves, the water phase plays an important role in late stage thermal conduction. Higher water saturation may lead to higher gas generation rate in the late stage. The water-unsaturated condition is also forecasted by the simulator. The implications of the data are discussed in detail.