个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:大煜书院执行院长
性别:男
毕业院校:美国华盛顿大学
学位:博士
所在单位:化工学院
学科:化学工程
办公地点:化学工程实验楼D211
联系方式:+86-411-84986513
电子邮箱:bingbingsun@dlut.edu.cn
Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages versus Apoptosis in Hepatocytes
点击次数:
论文类型:期刊论文
发表时间:2018-04-01
发表刊物:ACS NANO
收录刊物:SCIE、EI
卷号:12
期号:4
页面范围:3836-3852
ISSN号:1936-0851
关键字:metal oxides; Kupffer cells; hepatocytes; macrophages; NLRP3 inflammasome activation; caspase 1; pyroptosis
摘要:The liver and the mononuclear phagocyte system are a frequent target for engineered nanomaterials, either as a result of particle uptake and spread from primary exposure sites or systemic administration of therapeutic and imaging nanoparticles. In this study, we performed a comparative analysis of the toxicological impact of 29 metal oxide nanoparticles (NPs), some commonly used in consumer products, in transformed or primary Kupffer cells (KCs) and hepatocytes. We not only observed differences between KCs and hepatocytes, but also differences in the toxicological profiles of transition-metal oxides (TMOs, e.g., Co3O4) versus rare-earth oxide (REO) NPs (e.g., Gd2O3). While pro-oxidative TMOs induced the activation of caspases 3 and 7, resulting in apoptotic cell death in both cell types, REOs induced lysosomal damage, NLRP3 inflammasome activation, caspase 1 activation, and pyroptosis in KCs. Pyroptosis was accompanied by cell swelling, membrane blebbing, IL-1 beta release, and increased membrane permeability, which could be reversed by knockdown of the pore forming protein, gasdermin D. Though similar features were not seen in hepatocytes, the investigation of the cytotoxic effects of REO NPs could also be seen to affect macrophage cell lines such as J774A.1 and RAW 264.7 cells as well as bone marrow-derived macrophages. These phagocytic cell types also demonstrated features of pyroptosis and increased IL-1 beta production. Collectively, these findings demonstrate important mechanistic considerations that can be used for safety evaluation of metal oxides, including commercial products that are developed from these materials.