个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:大煜书院执行院长
性别:男
毕业院校:美国华盛顿大学
学位:博士
所在单位:化工学院
学科:化学工程
办公地点:化学工程实验楼D211
联系方式:+86-411-84986513
电子邮箱:bingbingsun@dlut.edu.cn
Nanomaterial-based vaccine adjuvants
点击次数:
论文类型:期刊论文
发表时间:2016-01-01
发表刊物:JOURNAL OF MATERIALS CHEMISTRY B
收录刊物:SCIE
卷号:4
期号:33
页面范围:5496-5509
ISSN号:2050-750X
摘要:Vaccination is a biological process that administers antigenic materials to stimulate an individual's immune system to develop immunity to a specific pathogen. It is the most effective tool to prevent illness and death from infectious diseases or diseases leading to cancers. Because many recombinant and synthetic antigens are poorly immunogenic, an adjuvant is essentially added to the vaccine formula that can potentiate the immune responses, offer better protection against pathogens and reduce the amount of antigens needed for protective immunity. To date, there have been nearly 100 different types of adjuvants associated with about 400 vaccines that are either commercially available or under development. Among these adjuvants, many of them are particulates and nano-scale in nature. Nanoparticles represent a wide range of materials with novel physicochemical properties that exhibit immunostimulatory effects. However, the mechanistic understanding of how their physicochemical properties affect immunopotentiation remains elusive. In this article, we aim to review the current developmental status of nanomaterial-based vaccine adjuvants, and further discuss their acting mechanisms, the understanding of which will benefit the rational design of effective vaccine adjuvants with improved immunogenicity for prevention of infectious diseases as well as therapeutic cancer treatment.