个人信息Personal Information
教授
硕士生导师
主要任职:伯川书院执行院长
其他任职:机械工程国家级实验教学示范中心主任
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
学科:机械制造及其自动化
办公地点:大连理工大学知方楼7009房间
联系方式:13516059116
电子邮箱:sunjing@dlut.edu.cn
Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability
点击次数:
论文类型:期刊论文
发表时间:2012-09-01
发表刊物:APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
收录刊物:SCIE、EI、Scopus
卷号:108
期号:3
页面范围:559-568
ISSN号:0947-8396
摘要:Super-hydrophobic aluminum (Al) surfaces were successfully fabricated via electrochemical machining in neutral NaClO3 electrolyte and subsequent fluoroalkylsilane (FAS) modification. The effects of the processing time, processing current density, and electrolyte concentration on the wettability, morphology, and roughness were studied. The surface morphology, chemical composition, and wettability of the Al surfaces were investigated using scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), white-light interferometry, roughness measurements, X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and optical contact angle measurements. The results show that hierarchical rough structures and low surface energy films were present on the Al surfaces after electrochemical machining and FAS modification. The combination of the rough structures and the low surface energy materials plays a crucial role in achieving super-hydrophobicity. Compared with the anodic oxidation and chemical etching method, the method proposed in our work does not require strong acid or alkali, and causes less harm to the environment and operators but with high processing efficiency. The rough structures required by the super-hydrophobic surfaces were obtained at 30-s processing time and the best super-hydrophobicity with 164.6(a similar to) water contact angle and 2(a similar to) tilting angle was obtained at 360 s. The resulting super-hydrophobic Al surfaces have a long-time stability in air and an excellent resistance to corrosive liquids.