个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:无
其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:应用化学. 精细化工
办公地点:大连理工大学西部校区化工实验楼E-223
联系方式:0411-84986493
电子邮箱:sunlc@dlut.edu.cn
Fabrication and Kinetic Study of a Ferrihydrite-Modified BiVO4 Photoanode
点击次数:
论文类型:期刊论文
发表时间:2017-03-01
发表刊物:ACS CATALYSIS
收录刊物:SCIE、EI
卷号:7
期号:3
页面范围:1868-1874
ISSN号:2155-5435
关键字:bismuth vanadate; water splitting; photoanode; passivation; ferrihydrite
摘要:In spite of great progress in the surface modification of semiconductor photoelectrodes, the role of the metal oxide cocatalyst on photoelectrochemical (PEC) performance is still not well understood. In this study, ferrihydrite (Fh) as a novel cocatalyst was decorated on a wormlike nanoporous BiVO4 photoanode. A surface kinetics study of Fh/BiVO4 by intensity-modulated photocurrent spectroscopy (IMPS) evidences the primary role of Fh on PEC performance enhancement, varying with the loading of Fh. It was found that dispersed Fh le nanoparticles accelerate hole transfer for water oxidation, but the resulting photoanode suffers from poor stability. The thick layers of Fh address the stability of the electrode by suppressing surface charge recombination but result in reduced hole transfer rates. Modification of a BiVO4 film with optimally thick layers of discrete nanoflakes effectively reduces charge recombination without compromising stability, leading to a high AM 1.5 G photocurrent of 4.78 mA/cm(2) at 1.23 V versus the reversible hydrogen electrode and an applied bias photon to current efficiency of 1.81% at 0.61 V. These values are comparable to the best results reported for undoped BiVO4.