孙立成

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:无

其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工

办公地点:大连理工大学西部校区化工实验楼E-223

联系方式:0411-84986493

电子邮箱:sunlc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Boosting the power conversion efficiency of perovskite solar cells to 17.7% with an indolo[3,2-: B] carbazole dopant-free hole transporting material by improving its spatial configuration

点击次数:

论文类型:期刊论文

发表时间:2019-01-01

发表刊物:Journal of Materials Chemistry A

收录刊物:EI

卷号:7

期号:24

页面范围:14835-14841

ISSN号:20507488

摘要:The development of facilely synthesized, dopant-free hole-transporting materials (HTMs) with high efficiency is of great significance for the potential application of perovskite solar cells (PSCs). Herein, we report two novel indolo[3,2-b]carbazole (ICZ) based small molecules obtained via a three-step reaction in a high yield without using expensive catalysts, namely C201 and C202, and further apply them as dopant-free HTMs in PSCs. Compared with C201, C202 contains two additional biphenylamino groups to improve its spatial configuration. It is found that the interplay between the molecular geometry and the aggregation behavior can exert a great influence on the film formation property and thus on the device performance. Strikingly, the champion devices employing C202 as the HTM deliver a much higher PCE of up to 17.7%, which is substantially higher than that of devices containing C201 (8.7%) under 100 mW cm-2 illumination (AM 1.5G). It is revealed that the C202 capping layer exhibits a more homogeneous and uniform surface morphology as compared to that of C201, which effectively reduces the charge recombination losses and facilitates charge extraction, leading to a much-enhanced photovoltaic performance. This is the first example of ICZ core-based small molecules as dopant-free HTMs in PSCs. Moreover, the PSCs containing C202 as the HTM also exhibited good long-term stability under ambient conditions (40% RH) as compared to devices with doped spiro-OMeTAD, due largely to the hydrophobic nature of C202 which prevented moisture from destroying the perovskite film. This work offers a new avenue for developing cost-effective and stable HTMs for PSCs and other optoelectronic devices. ? 2019 The Royal Society of Chemistry.