孙立成

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:无

其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工

办公地点:大连理工大学西部校区化工实验楼E-223

联系方式:0411-84986493

电子邮箱:sunlc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Sensitizer-Catalyst Assemblies for Water Oxidation

点击次数:

论文类型:期刊论文

发表时间:2015-03-16

发表刊物:INORGANIC CHEMISTRY

收录刊物:SCIE、Scopus

卷号:54

期号:6

页面范围:2742-2751

ISSN号:0020-1669

摘要:Two molecular assemblies with one Ru(II)-polypyridine photosensitizer covalently linked to one Ru(II)(bda)L2 catalyst (1) (bda = 2,2'-bipyridine-6,6'-dicarboxylate) and two photosensitizers covalently linked to one catalyst (2) have been prepared using a simple C-C bond as the linkage. In the presence of sodium persulfate as a sacrificial electron acceptor, both of them show high activity for catalytic water oxidation driven by visible light, with a turnover number up to 200 for 2. The linked photocatalysts show a lower initial yield for light driven oxygen evolution but a much better photostability compared to the three component system with separate sensitizer, catalyst and acceptor, leading to a much greater turnover number. Photocatalytic experiments and time-resolved spectroscopy were carried out to probe the mechanism of this catalysis. The linked catalyst in its Ru(II) state rapidly quenches the sensitizer, predominantly by energy transfer. However, a higher stability under photocatalytic condition is shown for the linked sensitizer compared to the three component system, which is attributed to kinetic stabilization by rapid photosensitizer regeneration. Strategies for employment of the sensitizer-catalyst molecules in more efficient photocatalytic systems are discussed.