![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:无
其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:应用化学. 精细化工
办公地点:大连理工大学西部校区化工实验楼E-223
联系方式:0411-84986493
电子邮箱:sunlc@dlut.edu.cn
Intramolecular Iron-Mediated C-H Bond Heterolysis with an Assist of Pendant Base in a [FeFe]-Hydrogenase Model
点击次数:
论文类型:期刊论文
发表时间:2014-12-03
发表刊物:JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
收录刊物:SCIE、PubMed、Scopus
卷号:136
期号:48
页面范围:16817-16823
ISSN号:0002-7863
摘要:Although many metalloenzymes containing iron play a prominent role in biological C-H activation processes, to date iron-mediated C(sp(3-)H heterolysis has not been reported for synthetic models of Fe/S-metalloenzymes. In contrast, ample precedent has established that nature's design for reversible hydrogen activation by the diiron hydrogenase ([FeFe]-H(2)ase) active site involves multiple irons, sulfur bridges, a redox switch, and a pendant amine base, in an intricate arrangement to perform H-H heterolytic cleavage. In response to whether this strategy might be extended to C-H activation, we report that a [FeFe]-H2ase model demonstrates iron-mediated intramolecular C-H heterolytic cleavage via an agostic C-H interaction, with proton removal by a nearby pendant amine, affording Fe-II-[ Fe'(II)-CH- S] three-membered-ring products, which can be reduced back to 1 by (CpCo)-Co-2 in the presence of HBF4. The function of the pendant base as a proton shuttle was confirmed by the crystal structures of the N-protonated intermediate and the final deprotonated product in comparison with that of a similar but pendant-amine-free complex that does not show evidence of C-H activation. The mechanism of the process was backed up by DFT calculations.