![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:无
其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:应用化学. 精细化工
办公地点:大连理工大学西部校区化工实验楼E-223
联系方式:0411-84986493
电子邮箱:sunlc@dlut.edu.cn
Enhanced Performance of p-Type Dye-Sensitized Solar Cells Based on Ultrasmall Mg-Doped CuCrO2 Nanocrystals
点击次数:
论文类型:期刊论文
发表时间:2013-08-01
发表刊物:CHEMSUSCHEM
收录刊物:SCIE、EI、Scopus
卷号:6
期号:8
页面范围:1432-1437
ISSN号:1864-5631
关键字:delaffosite oxides; doping; hydrothermal synthesis; semiconductors; solar cells
摘要:Herein, we present ultrasmall delafossite-type Mg-doped CuCrO2 nanocrystals prepared by using hydrothermal synthesis and their first application as photocathodes in efficient p-type dye-sensitized solar cells. The short-circuit current density (J(sc)) is notably increased by approximately 27% owing to the decreased crystallite size and the enhanced optical transmittance associated with Mg doping of the CuCrO2 nanocrystalline sample. An open-circuit voltage (V-oc) of 201mV, J(sc) of 1.51mAcm(-2), fill factor of 0.449, and overall photoconversion efficiency of 0.132% have been achieved with the CuCr0.9Mg0.1O2 dye photocathode sensitized with the P1 dye under optimized conditions. This efficiency is nearly threetimes higher than that of the NiO-based reference device, which is attributed to the largely improved V-oc and J(sc). The augmentation of V-oc and J(sc) can be attributed to the lower valance band position and the faster hole diffusion coefficient of CuCr0.9Mg0.1O2 compared to those of the NiO reference, respectively, which leads to a higher hole collection efficiency.