孙立成

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:无

其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工

办公地点:大连理工大学西部校区化工实验楼E-223

联系方式:0411-84986493

电子邮箱:sunlc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Effect of the acceptor on the performance of dye-sensitized solar cells

点击次数:

论文类型:期刊论文

发表时间:2013-10-28

发表刊物:PHYSICAL CHEMISTRY CHEMICAL PHYSICS

收录刊物:SCIE、PubMed、Scopus

卷号:15

期号:40

页面范围:17452-17459

ISSN号:1463-9076

摘要:Three new phenothiazine dyes were designed and synthesized, utilizing different acceptor groups. Upon application to TiO2-based solar cells, the effects of different acceptors on the photophysical and electrochemical properties of the dyes and the solar cell performance are detailed. The introduction of a pyridinium unit or 5-carboxy-1-hexyl-2,3,3-trimethyl-indolium unit into the molecular frame as the acceptor instead of cyano acrylic acid can effectively cause a red shift in the absorption spectra. Applied to DSSCs, the devices sensitized by CM502 with the pyridinium unit as the acceptor show the highest efficiency of 7.3%. The devices fabricated with dye CM501 with cyano acrylic acid as the acceptor exhibited the highest V-oc while for the devices sensitized by the dye CM503 with 5-carboxy-1-hexyl2,3,3- trimethyl-3H-indolium unit as the acceptor, the Voc value was the lowest, at 494 mV. The addition of TBP in the electrolyte can improve the performance of DSSCs fabricated using CM501 and CM502, with the Voc value greatly improved but the J(sc) value slightly decreased. However, with the addition of TBP in the electrolyte, the efficiency of the cells sensitized by CM503 dropped significantly (from 4.9% to 1.0% when 0.1 M TBP was added).