![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:无
其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:应用化学. 精细化工
办公地点:大连理工大学西部校区化工实验楼E-223
联系方式:0411-84986493
电子邮箱:sunlc@dlut.edu.cn
Effect of different electron donating groups on the performance of dye-sensitized solar cells
点击次数:
论文类型:期刊论文
发表时间:2010-01-01
发表刊物:DYES AND PIGMENTS
收录刊物:SCIE
卷号:84
期号:1
页面范围:62-68
ISSN号:0143-7208
关键字:Dye-sensitized solar cells; Organic sensitizer; Phenothiazine; Tetrahydroquinoline; Triphenylamine; Electrochemical impedance spectroscopy
摘要:A series of organic sensitizers containing identical pi-spacers and electron acceptors but different, aromatic amine electron-donating groups, were used in dye-sensitized solar cells to study the effect of the electron donating groups on device performance. The derived photophysical and photovoltaic properties, as well as density functional theory calculations, revealed that the tetrahydroquinoline dye was prone to aggregate upon the surface of titanium dioxide owing to the dye's planar structure. A 45% improvement in efficiency of a tetrahydroquinoline dye based cell was achieved when chenodeoxycholic acid was employed as co-adsorbent. However, the airscrew type of triphenylamine unit and Y type structure of the substituted phenothiazine framework suppressed dye aggregation on titanium dioxide. The efficiency of a phenothiazine dye-based cell fabricated using saturated co-adsorbent in dichloromethane was only 15% greater than that achieved in the absence of co-adsorbent. Electrochemical Impedance Spectroscopy was used to determine the interfacial charge transfer process occurring in solar cells that employed different dyes in both the absence and presence of chenodeoxycholic acid as co-adsorbent. (C) 2009 Elsevier Ltd. All rights reserved.