孙怡

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:信息与通信工程学院

办公地点:海山楼A420

联系方式:lslwf@dlut.edu.cn

电子邮箱:lslwf@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

CrosslnfoNet: Multi-Task Information Sharing Based Hand Pose Estimation

点击次数:

论文类型:会议论文

发表时间:2019-01-01

收录刊物:EI、CPCI-S

卷号:2019-June

页面范围:9888-9897

摘要:This paper focuses on the topic of vision based hand pose estimation from single depth map using convolutional neural network (CNN). Our main contributions lie in designing a new pose regression network architecture named CrossInfoNet. The proposed CrossInfoNet decomposes hand pose estimation task into palm pose estimation sub-task and finger pose estimation sub-task, and adopts two-branch cross connection structure to share the beneficial complementary information between the sub-tasks. Our work is inspired by multi-task information sharing mechanism, which has been few discussed in hand pose estimation using depth data in previous publications. In addition, we propose a heat-map guided feature extraction structure to get better feature maps, and train the complete network end-to-end. The effectiveness of the proposed CrossInfoNet is evaluated with extensively self-comparative experiments and in comparison with state-of-the-art methods on four public hand pose datasets. The code is available in.