个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
办公地点:海山楼A420
联系方式:lslwf@dlut.edu.cn
电子邮箱:lslwf@dlut.edu.cn
Video super resolution based on non-local regularization and reliable motion estimation
点击次数:
论文类型:期刊论文
发表时间:2014-04-01
发表刊物:SIGNAL PROCESSING-IMAGE COMMUNICATION
收录刊物:SCIE、EI、Scopus
卷号:29
期号:4
页面范围:514-529
ISSN号:0923-5965
关键字:Super-resolution; Non-local regularization; Motion estimation; Blur kernel estimation
摘要:Video super-resolution (SR) is a process for reconstructing high-resolution (HR) images by utilizing complementary information among multiple low-resolution (LR) images. Accurate estimation of the motion among the LR images significantly affects the quality of the reconstructed HR image. In this paper, we analyze the possible reasons for the inaccuracy of motion estimation and then propose a multi-lateral filter to regularize the process of motion estimation. This filter can adaptively correct motion estimation according to the estimation reliability, image intensity discontinuity, and motion dissimilarity. Furthermore, we introduce a non-local prior to solve the ill-posed problem of HR image reconstruction. This prior can fully utilize the self-similarities existing in natural images to regularize the HR image reconstruction. Finally, we employ a Bayesian formulation to incorporate the two regularizations into one Maximum a Posteriori (MAP) estimation model, where the HR image and the motion estimation can be refined progressively in an alternative and iterative manner. In addition, an algorithm that estimates the blur kernel by analyzing edges in an image is also presented in this paper. Experimental results demonstrate that the proposed approaches are highly effective and compare favorably to state-of-the-art SR algorithms. (C) 2014 Elsevier B.V. All rights reserved.