孙依人

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:交通运输系

学科:道路与铁道工程. 市政工程

办公地点:综合实验4号楼520室

电子邮箱:sunyiren@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Using the viscoelastic parameters to estimate the glass transition temperature of asphalt binders

点击次数:

论文类型:期刊论文

发表时间:2017-10-30

发表刊物:CONSTRUCTION AND BUILDING MATERIALS

收录刊物:Scopus、SCIE、EI

卷号:153

页面范围:908-917

ISSN号:0950-0618

关键字:Asphalt binder; Glass transition temperature; Viscoelastic behavior; Time-temperature superposition principle (TTSP); Dynamic shear rheometer (DSR); Modified Havriliak-Negami (MHN) model

摘要:Glass transition temperature T-g plays an important role in the complex low-temperature behavior of asphalt binder. It is the characteristic temperature at which asphalt binder changes from viscoelastic state to glassy state. In dynamic mechanical analysis, it is determined as the temperature at which the loss modulus attains its peak. This paper presented an approach for analytically estimating the glass transition temperature using viscoelastic parameters of master curves. To demonstrate this approach, asphalt binders were tested by a dynamic shear rheometer (DSR) at different temperatures using frequency sweeps. The storage modulus and the loss modulus master curves were constructed using a complex modulus model and the visocelastic parameters were determined. After verifying the model's accuracy, the viscoelastic parameters were used to estimate the glass transition temperatures of asphalt binders at different reference frequencies. Then, the calculated glass transition temperatures were compared with measured results from conventional temperature sweeps. The comparison indicated that there was a good correlation between them. The proposed method provided a reliable estimation of the glass transition temperature for asphalt binders. A link between the glass transition temperature and the viscoelastic characteristic of asphalt binders was established. (C) 2017 Elsevier Ltd. All rights reserved.