孙媛媛

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术

电子邮箱:syuan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

The Classification of HEp-2 Cell Patterns Using Fractal Descriptor

点击次数:

论文类型:期刊论文

发表时间:2015-07-01

发表刊物:IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM)

收录刊物:SCIE、EI、CPCI-S、Scopus

卷号:14

期号:5,SI

页面范围:513-520

ISSN号:1536-1241

关键字:Automatic classification; fractal dimension; HEp-2 cells; morphological; pixel difference

摘要:Indirect immunofluorescence (IIF) with HEp-2 cells is considered as a powerful, sensitive and comprehensive technique for analyzing antinuclear autoantibodies (ANAs). The automatic classification of the HEp-2 cell images from IIF has played an important role in diagnosis. Fractal dimension can be used on the analysis of image representing and also on the property quantification like texture complexity and spatial occupation. In this study, we apply the fractal theory in the application of HEp-2 cell staining pattern classification, utilizing fractal descriptor firstly in the HEp-2 cell pattern classification with the help of morphological descriptor and pixel difference descriptor. The method is applied to the data set of MIVIA and uses the support vector machine (SVM) classifier. Experimental results show that the fractal descriptor combining with morphological descriptor and pixel difference descriptor makes the precisions of six patterns more stable, all above 50%, achieving 67.17% overall accuracy at best with relatively simple feature vectors.