个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 固体力学. 计算力学
办公地点:综合实验1号楼508
联系方式:邮件或手机壹伍玖零肆玖伍陆贰捌陆
电子邮箱:zhisun@dlut.edu.cn
Flexural strength and energy absorption of carbon-fiber-aluminum-honeycomb composite sandwich reinforced by aluminum grid
点击次数:
论文类型:期刊论文
发表时间:2014-11-01
发表刊物:THIN-WALLED STRUCTURES
收录刊物:SCIE、EI
卷号:84
页面范围:416-422
ISSN号:0263-8231
关键字:Carbon fibers; Honeycomb filled orthogrid; Sandwich structures; Mechanical properties; Scanning electron microscopy
摘要:The full potential of carbon-fiber and aluminum-honeycomb sandwich panels and structures has been limited by the huge property mismatch between the high-stiffness carbon fiber and low-stiffness aluminum honeycomb. In this study, an orthogrid structure was added into the sandwich structure to raise the stiffness of soft honeycomb and therefore reduce the interfacial mismatch. The core then became an aluminum orthogrid structure filled with aluminum-honeycomb blocks. Three point bending tests were conducted to compare carbon fiber sandwiches with different types of core: (1) aluminum-honeycomb core; (2) aluminum-plate orthogrid core; and (3) aluminum-plate orthogrid core filled by aluminum-honeycomb blocks. The honeycomb filled orthogrid core sandwich was a bit heavier than the honeycomb or grid sandwich, but the critical load, specific strength and energy absorption ability were all improved. The results indicated that the honeycomb filled orthogrid core sandwich with carbon fiber face sheet could provide improved structural properties for thin walled engineering structures. (C) 2014 Elsevier Ltd. All rights reserved.