个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:化学学院院长、党委副书记
性别:男
毕业院校:北京市清华大学
学位:博士
所在单位:化学学院
学科:无机化学. 物理化学. 化学工程
电子邮箱:taosy@dlut.edu.cn
Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution
点击次数:
论文类型:期刊论文
发表时间:2010-06-14
发表刊物:JOURNAL OF MATERIALS CHEMISTRY
收录刊物:SCIE、EI
卷号:20
期号:22
页面范围:4635-4641
ISSN号:0959-9428
摘要:A novel, "all-in-one'', multifunctional microsphere with a fluorescent mesoporous silica shell (Rhodamine B coordinate receptor inside) and a magnetic core (Fe3O4) has been successfully fabricated using a sol-gel method and small molecular (CTAB) surfactants as structure-directing agents. At the same time, they were examined for environmental protection applications to detect, adsorb and remove Hg2+ in aqueous solution. The prepared nanocomposite microspheres were fluorescent, mesoporous, and magnetizable, with a diameter of 300-450 nm, a surface area of 600 m(2) g(-1), a pore size of 2.5 nm, and a saturation magnetization of 27.5 emu g(-1). These multifuctional microspheres showed excellent fluorescence sensitivity and selectivity towards Hg2+ over other metal ions (Na+, Mg2+, Mn2+, Co2+, Ni2+, Zn2+, Cd2+, Ag+, Pb2+ and Cu2+). Upon the addition of Hg2+, an overall emission change of 16-fold was observed, and the detection limit of Hg2+ was as low as 10 ppb. The adsorption process of Hg2+ on the microspheres was well described by the Langmuir equation. The equilibrium can be established within five minutes and the adsorption capacity was 21.05 mg g(-1). The concentration of Hg2+ ions can be reduced to less than 0.05 ppm and the used microspheres can be easily separated from the mixture by adding an external magnetic field. These results suggest that these "all-in-one'' multifunctional nanocomposites are potentially useful materials for simultaneously rapidly detecting and recovering dangerous pollutants in aqueous solution.