个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:水利工程系
学科:港口、海岸及近海工程
办公地点:Room A305
State Key Laboratory of Coastal and Offshore Engineering
联系方式:0411-84707103
电子邮箱:bteng@dlut.edu.cn
Numerical study on cnoidal wave run-up around a vertical circular cylinder
点击次数:
论文类型:期刊论文
发表时间:2017-02-01
发表刊物:APPLIED OCEAN RESEARCH
收录刊物:SCIE、EI
卷号:63
页面范围:276-287
ISSN号:0141-1187
关键字:Cnoidal wave; Wave run-up; Boussinesq equation; Finite element method; Curved wall boundary
摘要:A finite element model of Boussinesq-type equations was set up, and a direct numerical method is proposed so that the full reflection boundary condition is exactly satisfied at a curved wall surface. The accuracy of the model was verified in tests. The present model was used to further examine cnoidal wave propagation and run-up around the cylinder. The results showed that the Ursell number is a nonlinear parameter that indicates the normalized profile of cnoidal waves and has a significant effect on the wave run-up. Cnoidal waves with the same Ursell number have the same normalized profile, but a difference in the relative wave height can still cause differences in the wave run-up between these waves. The Maximum dimensionless run-up was predicted under various conditions. Cnoidal waves hold entirely distinct properties from Stokes waves under the influence of the water depth, and the nonlinearity of cnoidal waves enhances rather than weakens with increasing wavelength. Thus, the variations in the maximum run-up with the wavelength for cnoidal waves are completely different from those for Stokes waves, and there are even significant differences in the variation between different cnoidal waves. (C) 2017 Elsevier Ltd. All rights reserved.