滕斌

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:港口、海岸及近海工程

办公地点:Room A305
State Key Laboratory of Coastal and Offshore Engineering

联系方式:0411-84707103

电子邮箱:bteng@dlut.edu.cn

扫描关注

论文成果

当前位置: 滕斌主页 >> 科学研究 >> 论文成果

Fully nonlinear wave interaction with freely floating non-wall-sided structures

点击次数:

论文类型:期刊论文

发表时间:2015-01-01

发表刊物:ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS

收录刊物:SCIE、EI

卷号:50

页面范围:117-132

ISSN号:0955-7997

关键字:Higher-order boundary element method; Fully nonlinear water wave theory; Freely floating body; Fluid-structure interaction; Resonance at high-frequency

摘要:A fully nonlinear numerical model for a floating body in the open sea has been developed based on velocity potential together with a higher-order boundary element method (BEM). The total wave elevation and the total velocity potential are separated into two parts, based on the incoming wave from infinity and the disturbed potential by the body. The mesh is generated only once at the initial time and the element nodes are rearranged subsequently without changing their connectivity by using a spring analogy method. Through some auxiliary functions, the mutual dependence of fluid/structure motions are decoupled, which allows the body acceleration to be obtained without the knowledge of the pressure distribution. Numerical results are provided for forces and run-ups of a fixed cylinder with flare and the comparison is made with the second order theory in the frequency domain. Simulations are also made for a freely floating body responding to wave excitation. Resonance related to ringing excited by the high order force at the triple wave frequency is discussed. Further results are provided for motions, forces and run-ups of a floating cylinder with flare. Comparison with the results for the fixed body and body in single degree of freedom is made. (C) 2014 Elsevier Ltd. All rights reserved.