滕斌

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:港口、海岸及近海工程

办公地点:Room A305
State Key Laboratory of Coastal and Offshore Engineering

联系方式:0411-84707103

电子邮箱:bteng@dlut.edu.cn

扫描关注

论文成果

当前位置: 滕斌主页 >> 科学研究 >> 论文成果

Current Effects on Nonlinear Wave Scattering by a Submerged Plate

点击次数:

论文类型:期刊论文

发表时间:2014-01-01

发表刊物:JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING

收录刊物:SCIE

卷号:140

期号:5

ISSN号:0733-950X

关键字:Submerged plate; Wave-current interaction; Bound wave; Higher-order boundary element method (HOBEM); Fully nonlinear numerical wave flume; Wave scattering

摘要:On the basis of a time-domain higher-order boundary element method, a two-dimensional fully nonlinear numerical wave flume is developed to investigate the nonlinear interactions between a regular wave and a submerged horizontal plate in the presence of uniform currents. A two-point method is used to discriminate bound (i.e., nonlinearly forced by and coupled to free waves) and free harmonic waves propagating upstream and downstream from the structure. The proposed model is verified against experimental and other numerical data for wave-current interaction without obstacles and nonlinear wave scattering by a submerged plate in the absence of currents. A first-order analysis shows that the reflection coefficient increases in the following current (i.e., current in the same direction as the incident wave) and decreases in the opposing current (i.e., current in the opposite direction to the incident wave). Moreover, the plate length for the maximum reflection to occur is not sensitive to the current. A second-order analysis indicates that downstream from the plate, the current has a stronger influence on the secondary free mode than on the first free mode. The energy transfer between the fundamental wave and the higher harmonics is intensified by a following current but weakened by an opposing current. The second free harmonic wave amplitude is affected more by the opposing current than it is by the following current. (C) 2014 American Society of Civil Engineers.