![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:水利工程系
学科:港口、海岸及近海工程
办公地点:Room A305
State Key Laboratory of Coastal and Offshore Engineering
联系方式:0411-84707103
电子邮箱:bteng@dlut.edu.cn
Full time-domain nonlinear coupled dynamic analysis of a truss spar and its mooring/riser system in irregular wave
点击次数:
论文类型:期刊论文
发表时间:2014-01-01
发表刊物:SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY
收录刊物:SCIE、EI
卷号:57
期号:1
页面范围:152-165
ISSN号:1674-7348
关键字:coupled method; full time-domain; second-order; truss spar; rod theory; irregular wave
摘要:A new full time-domain nonlinear coupled method has been established and then applied to predict the responses of a Truss Spar in irregular wave. For the coupled analysis, a second-order time-domain approach is developed to calculate the wave forces, and a finite element model based on rod theory is established in three dimensions in a global coordinate system. In numerical implementation, the higher-order boundary element method (HOBEM) is employed to solve the velocity potential, and the 4th-order Adams-Bashforth-Moultn scheme is used to update the second-order wave surface. In deriving convergent solutions, the hull displacements and mooring tensions are kept consistent at the fairlead and the motion equations of platform and mooring-lines/risers are solved simultaneously using Newmark-beta integration scheme including Newton-Raphson iteration. Both the coupled quasi-static analysis and the coupled dynamic analysis are performed. The numerical simulation results are also compared with the model test results, and they coincide very well as a whole. The slow-drift responses can be clearly observed in the time histories of displacements and mooring tensions. Some important characteristics of the coupled responses are concluded.