个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 《Plasma Science and Technology》学术期刊编委
性别:男
毕业院校:大连工学院
学位:硕士
所在单位:物理学院
学科:等离子体物理
办公地点:主楼东侧楼(物理系楼)304室
联系方式:0411-84707981
电子邮箱:wangdez@dlut.edu.cn
SOLPS5.1 analysis of detachment with drifts and gas pumping effects in EAST
点击次数:
论文类型:期刊论文
发表时间:2016-08-01
发表刊物:PLASMA PHYSICS AND CONTROLLED FUSION
收录刊物:SCIE、EI
卷号:58
期号:8
ISSN号:0741-3335
关键字:SOLPS5.1; detachment; drifts; pumping
摘要:The aim of this paper is to estimate the effects of usual drifts and gas puffing/pumping locations on divertor detachment and Ar ion transport in the Experimental Advanced Superconducting Tokamak (EAST) by using the edge plasma code package SOLPS5.1. The simulated results reveal that which target plate first detaches depends strongly on the usual drifts, but not on the location of impurity gas puffing, which could be one of the possible explanations for the experimentally observed phenomenon (Chen et al 2013 Phys. Plasmas 20 022311) that the lower inner target first detached compared to the lower outer target with the lower outer gas puffing. The physics behind this phenomenon is that drifts not only can induce background ion flux, plasma density and temperature redistribution in the scrape-off layer (SOL) and divertor region, but also can change the Ar impurity force balance leading to Ar ions being dragged from bottom to top. Furthermore, the simulated results illustrate that the Ar ion transport in the SOL and divertor region is similar for different gas puffing locations including upstream and divertor region before partial detachment. However, the Ar ions penetrate into the core more easily, giving rise to more discharge disruption during complete detachment with upstream gas puffing than with divertor region puffing. Finally, we also estimate the effect of gas pumping on the detachment in order to realize long-pulse partial detachment in EAST. The results indicate that long-pulse partial detachment could be obtained by improving the pumping speed to match the puffing speed in case the excess Ar atoms accumulate in the core plasma during partial detachment in EAST.