个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 《Plasma Science and Technology》学术期刊编委
性别:男
毕业院校:大连工学院
学位:硕士
所在单位:物理学院
学科:等离子体物理
办公地点:主楼东侧楼(物理系楼)304室
联系方式:0411-84707981
电子邮箱:wangdez@dlut.edu.cn
Two-dimensional numerical study of ELMs-induced erosion of tungsten divertor target tiles with different edge shapes
点击次数:
论文类型:期刊论文
发表时间:2016-01-01
发表刊物:FUSION ENGINEERING AND DESIGN
收录刊物:SCIE、EI
卷号:102
页面范围:28-35
ISSN号:0920-3796
关键字:Divertor tile; Edge shape; ELMs; Melting
摘要:Thermal performance of the divertor tile with different edge shapes was assessed numerically along the poloidal direction by a two-dimensional heat conduction model with considering the geometrical effects of castellated divertor tiles on the properties of its adjacent plasma. The energy flux density distribution arriving at the castellated divertor tile surface was evaluated by a two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo Collisions code and then the obtained energy flux distribution was used as input for the heat conduction model. The simulation results showed that the divertor tiles with any edge shape of interest (rectangular edge, slanted edge, and rounded edge) would melt, especially, in the edge surface region of facing plasma poloidally under typical heat flux density of a transient event of type-I ELMs for ITER, deposition energy of 1 MJ/m(2) in a duration of 600 mu s. In comparison with uniform energy deposition, the vaporizing erosion was reduced greatly but the melting erosion was aggravated noticeably in the edge area of plasma facing diveror tile. Of three studied edge shapes, the simulation results indicated that the divertor plate with rounded edge was the most resistant to the thermal erosion. (C) 2015 Elsevier B.V. All rights reserved.