个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 《Plasma Science and Technology》学术期刊编委
性别:男
毕业院校:大连工学院
学位:硕士
所在单位:物理学院
学科:等离子体物理
办公地点:主楼东侧楼(物理系楼)304室
联系方式:0411-84707981
电子邮箱:wangdez@dlut.edu.cn
Period Multiplication in a Continuous Time Series of Radio-Frequency DBDs at Atmospheric Pressure
点击次数:
论文类型:期刊论文
发表时间:2012-04-01
发表刊物:COMMUNICATIONS IN COMPUTATIONAL PHYSICS
收录刊物:SCIE
卷号:11
期号:4
页面范围:1226-1235
ISSN号:1815-2406
关键字:Atmospheric radio-frequency discharge; period-doubling bifurcation; chaos
摘要:As a spatially extended dissipative system with strong nonlinearity, the radio-frequency (rf) dielectric-barrier discharges (DBDs) at atmospheric pressure possess complex spatiotemporal nonlinear behaviors. In this paper, the time-domain nonlinear behaviors of rf DBD in atmospheric argon are studied numerically by a one-dimensional fluid model. Simulation results show that, under appropriate controlling parameters, the rf DBD can undergo a transition from single-period state to chaos through period doubling bifurcation with increasing discharge time, i.e., the regular periodic oscillation and chaos can coexist in a long time series of the atmospheric-pressure rf DBD. With increasing applied voltage amplitude, the duration of the periodic oscillation reduces gradually and chaotic zone increases, and finally the whole discharge series becomes completely chaotic state. This is different from conventional period doubling route to chaos. Moreover, the spatial characteristics of rf period-doubling discharge and chaos, as well as the parameter range of various discharge behaviors occurring are also investigated in this paper.