个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 《Plasma Science and Technology》学术期刊编委
性别:男
毕业院校:大连工学院
学位:硕士
所在单位:物理学院
学科:等离子体物理
办公地点:主楼东侧楼(物理系楼)304室
联系方式:0411-84707981
电子邮箱:wangdez@dlut.edu.cn
Molecular dynamics simulation of energy exchanges during hydrogen collision with graphite sheets
点击次数:
论文类型:期刊论文
发表时间:2010-06-01
发表刊物:JOURNAL OF APPLIED PHYSICS
收录刊物:SCIE、EI
卷号:107
期号:11
ISSN号:0021-8979
关键字:fusion reactor divertors; graphene; hydrogen; molecular dynamics method; plasma simulation; plasma-wall interactions; sputtering
摘要:Experiments show that the energy of particles incident on divertor plates in fusion devices seldom exceeds 100 eV. Trim code and its variants are not suitable to predict the sputtering yield of carbon-based divertor plates for this energy range and, therefore, a dynamic model, taking into account the C-H bond formation and breaking, and the structure of carbon, is needed. In this paper, the molecular dynamics method is employed to investigate collision processes between incident hydrogen atoms and a graphene sheet. The simulation results demonstrate that the collision processes cannot be adequately described by a simple binary approximation. The energy transfer from the projectile to the graphite sheet exhibits a very complicated behavior when the kinetic energy of the incident hydrogen atom is below 30 eV, strongly depending on the impact position. When its kinetic energy is lower than 0.35 eV, the incident hydrogen is always reflected back from the single, perfect graphite sheet; when its kinetic energy is higher than 0.35 eV, then whether the incident particle penetrates the graphite sheet, is reflected back or is adsorbed depends on the impact position. In certain areas of the graphite sheet, either adsorption or reflection of an incident hydrogen atom can occur in two different energy ranges. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3428447]