个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:研究生院常务副院长
其他任职:辽宁省凝固控制与数字化制备技术重点实验室主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
学科:材料加工工程
办公地点:研究生院;材料科学与工程学院
联系方式:tmwang@dlut.edu.cn
电子邮箱:tmwang@dlut.edu.cn
Evaluation of promoting effect of a novel Cu-bearing metal stent on endothelialization process from in vitro and in vivo studies
点击次数:
论文类型:期刊论文
发表时间:2017-12-12
发表刊物:SCIENTIFIC REPORTS
收录刊物:SCIE、PubMed
卷号:7
期号:1
页面范围:17394
ISSN号:2045-2322
摘要:Drug eluting stents (DES) have been extensively applied nowadays and reduce the incidence of instent restenosis (ISR) greatly as compared with bare metal stents (BMS). However, the development of DES is hindered by the risk of late stent thrombosis (LST) due to delayed re-endothelialization, while endothelialization is an important process related to ISR and LST after implantation. 316L is a traditional stent material without bioactivity and have a high risk of ISR. Cu is recognized for angiogenesis stimulation in these years. Hence a copper bearing 316L stainless steel (316L-Cu) was prepared and evaluated about its effect on endothelialization in this paper. Compared with traditional 316L, it was proved that 316L-Cu increased the proliferation of co-cultured human umbilical vein endothelial cells (HUVECs) at first day. Moreover, HUVECs stretched better on the surface of 316L-Cu. It also improved the expression of angiogenesis related genes and tube formation ability in vitro. 316L-CuBMS, DES and 316L-BMS were implanted in swine to evaluate the re-endothelialization ability in vivo. And 316L-Cu-BMS showed the best effect on endothelialization with good biosafety. Consequently, 316L-Cu is a kind of promising BMS material for coronary field.