个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:研究生院常务副院长
其他任职:辽宁省凝固控制与数字化制备技术重点实验室主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
学科:材料加工工程
办公地点:研究生院;材料科学与工程学院
联系方式:tmwang@dlut.edu.cn
电子邮箱:tmwang@dlut.edu.cn
Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping
点击次数:
论文类型:期刊论文
发表时间:2017-05-01
发表刊物:NANO ENERGY
收录刊物:SCIE、EI
卷号:35
页面范围:387-395
ISSN号:2211-2855
关键字:Thermoelectric materials; Strontium titanate; Cold isostatic pressing; Microstructure; Effective mass
摘要:Strontium titanite (SrTiO3), which is an experimentally-friendly thermoelectric material, could be a promising candidate for thermoelectric power generation applications. The theorectical study indicates the co-doping of La and Nb could enhance the thermoelectric performance, however, the thermoelectric figure of merits (ZTs) of SrTiO3 are still low because the co-doping process at nano-scale is experimentally difficult to control. Here we report a high performance SrTiO3 with La-Nb co-doping, which are prepared by a combination of hydrothermal method and high-efficiency sintering. Nano-scale co-doping is successfully modulated by hydrothermal method, and nano-inclusions precipitate during sintering process, to form complex microstructures. In this case, the electrical and thermal transport properties are optimized simultaneously by doping concentration and dopants type, resulting in a record-high ZT > 0.6 at 1000-1100 K in the 10 mol% La and 10 mol% Nb doped SrTiO3 bulk materials. The nano-scale modulation doping and microstructure controlling approach validated in the present study should be also applicable for other thermoelectric materials.