![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:研究生院常务副院长
其他任职:辽宁省凝固控制与数字化制备技术重点实验室主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
学科:材料加工工程
办公地点:研究生院;材料科学与工程学院
联系方式:tmwang@dlut.edu.cn
电子邮箱:tmwang@dlut.edu.cn
Development of TiB2 reinforced aluminum foundry alloy based in situ composites - Part II: Enhancing the practical aluminum foundry alloys using the improved Al-5 wt%TiB2 master composite upon dilution
点击次数:
论文类型:期刊论文
发表时间:2014-05-27
发表刊物:MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
收录刊物:SCIE、EI、Scopus
卷号:605
页面范围:22-32
ISSN号:0921-5093
关键字:in situ composites; TiB2 particles; Microstructure; Mechanical properties
摘要:This is Part II of the two part study. Part I we dedicated to optimization of the fabrication of in situ TiB2 particulate reinforced aluminum matrix composites. In this part, efforts were made to confirm the strengthening effects of the Al-5 wt% TiB2 composite, as a "master composite", on the practical foundry alloys, i.e. AlSi7Mg0.3, AlCu4.5Si1.1 and AlZn6Mg0.5. Experimental work and theoretical analysis are presented to interpret the improved yield strength of the diluted composites as influenced by their microstructures. The theoretically predicted and fitted values were in good agreement with the observed microstructural features and particle distribution, strongly supporting the mechanisms we proposed. The remelting and diluting approach can achieve superior improvement in UTS with respect to the conventional halide salt route, while compromising less ductility of the final composite. This characteristic is attractive from both technological and economic standpoints. Technologically, the present work can assist in providing strengthening strategies for different aluminum foundry alloy systems. (C) 2014 Elsevier B.V. All rights reserved.
上一条:Faceted-nonfaceted growth transition and 3-D morphological evolution of primary Al6Mn microcrystals in directionally solidified Al-3 at.% Mn alloy
下一条:Development of TiB2 reinforced aluminum foundry alloy based in situ composites - Part I: An improved halide salt route to fabricate Al-5 wt%TiB2 master composite