副教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 材料科学与工程学院
学科: 材料学. 生物医学工程
办公地点: 材料馆224
联系方式: 15641198386
电子邮箱: wangwq@dlut.edu.cn
腾讯QQ : 558132
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2017-02-01
发表刊物: JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY-MEDICAL SCIENCES
收录刊物: SCIE、PubMed、Scopus
卷号: 37
期号: 1
页面范围: 122-130
ISSN号: 1672-0733
关键字: titanium implant; micro-arc oxidation; cortex-like structure; osseointegration; histomorphometry
摘要: In our previous studies, a novel cortex-like TiO2 coating was prepared on Ti surface through micro-arc oxidation (MAO) by using sodium tetraborate as electrolyte, and the effects of the coating on cell attachment were testified. This study aimed to investigate the effects of this cortex-like MAO coating on osseointegration. A sand-blasting and acid-etching (SLA) coating that has been widely used in clinical practice served as control. Topographical and chemical characterizations were conducted by scanning electron microscopy, energy dispersive X-ray spectrometer, X-ray diffraction, contact angle meter, and step profiler. Results showed that the cortex-like coating had microslots and nanopores and it was superhydrophilic, whereas the SLA surface was hydrophobic. The roughness of MAO was similar to that of SLA. The MAO and SLA implants were implanted into the femoral condyles of New Zealand rabbits to evaluate their in-vivo performance through micro-CT, histological analysis, and fluorescent labeling at the bone-implant interface four weeks after surgery. The micro-CT showed that the bone volume ratio and mean trabecular thickness were similar between MAO and SLA groups four weeks after implantation. Histological analysis and fluorescent labeling showed no significant differences in the bone-implant contact between the MAO and SLA surfaces. It was suggested that with micro/nanostructure and superhydrophilicity, the cortex-like MAO coating causes excellent osseointegration, holding a promise of an application to implant modification.