个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 应用与实验力学
办公地点:力学系楼223室
电子邮箱:adoll@dlut.edu.cn
Fabrication and wave absorption property of Co-C material prepared by direct detonation of gaseous hydrocarbon fuels
点击次数:
论文类型:期刊论文
发表时间:2019-11-01
发表刊物:DIAMOND AND RELATED MATERIALS
收录刊物:EI、SCIE
卷号:99
ISSN号:0925-9635
关键字:Nanoparticles; Nanotubes; High pressure high temperature; Absorption; Gaseous detonation
摘要:The gaseous hydrocarbon fuels were ignited by a 20J high energy electric spark in a gaseous detonation tube. The possibility of direct detonation and the stable propagation of detonation wave in the tube were analysed. The cobalt(III) acetylacetonate (Co(acac)(3)) was decomposed by high temperature generated via gaseous detonation to prepare Co-C materials. The characterization results indicated that the Co-C materials prepared by 2H(2)-O-2 detonation consisted of nano-sized Co@C particles and micron-sized CNTs in length. While the Co-C materials fabricated by CH4-2O(2) and C2H2-2O(2) detonation were micron-sized Co@C particles. The morphology of Co-C materials were greatly affected by the combustion heat of the gaseous hydrocarbon fuels, the higher the combustion heat, the larger particle size of Co@C. The degree of graphitization of Co@C was low, while the crystallinity of Co was relatively high. The growth mechanism of Co-C materials was discussed by using detonation collision model and ZND model. The minimum RL value of Co@C particles-paraffin mixture was - 3.8 dB at 13.9 GHz with thickness of 3 mm.