Yan Wang   

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Title : 环境学院教工党支部宣传委员

MORE> Recommended Ph.D.Supervisor Recommended MA Supervisor Institutional Repository Personal Page
Language:English

Paper Publications

Title of Paper:Levels and enantiomeric signatures of organochlorine pesticides in Chinese forest soils: Implications for sources and environmental behavior

Hits:

Date of Publication:2020-07-01

Journal:ENVIRONMENTAL POLLUTION

Included Journals:PubMed、SCIE

Volume:262

Page Number:114139

ISSN No.:0269-7491

Key Words:OCP; Forest; Chiral pesticides; Enantiomeric fraction; Sources

Abstract:We investigated the levels and distributions of organochlorine pesticides (OCPs) in 159 background soil samples collected from 30 forested mountain sites across China. The sum of DDT was the most abundant OCP, with the concentrations of 0.197-207 ng/g and 0.033-122 ng/g in the O-horizon and A-horizon, respectively. High concentrations of OCPs usually occur near agricultural regions or high consumption areas. The spatial distribution was mainly influenced by the emission sources and soil total organic contents (TOC). The chiral compounds were generally nonracemic in the soils and showed preferential degradation of (-) o,p'- dichlorodiphenyltrichloroethane, (+) trans-chlordane, and (-) cis-chlordane in both the O- and A-horizons. The enantiomeric fraction (EF) distributions of chiral OCPs displayed no differences across the forest sites in the O-horizon or the A-horizon. Comparing the deviation of EFs from racemic (DEVrac = absolute value of 0.500 - EF) with environmental parameters, we found that DEVrac of cis-chlordane demonstrated a strong positive correlation with TOC (p < 0.05) and the C/N ratio (p < 0.01). This relationship suggests that these factors could affect the microbial activity and significantly impact the extent of enantioselective degradation of chiral compounds in the soils. Fresh and historical applications of DDT and historical chlordane and endosulfan uses may be prominent sources of OCP accumulation in Chinese forest soils. (C) 2020 Elsevier Ltd. All rights reserved.

Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024
Click:    MOBILE Version DALIAN UNIVERSITY OF TECHNOLOGY Login

Open time:..

The Last Update Time: ..