王琰

个人信息Personal Information

副教授

博士生导师

硕士生导师

任职 : 环境学院教工党支部宣传委员

性别:男

毕业院校:中国科学院广州地球化学研究所

学位:博士

所在单位:环境学院

学科:环境科学. 环境工程

办公地点:西部校区环境楼B501

联系方式:E-mail:wangyandut@dlut.edu.cn

电子邮箱:wangyandut@dlut.edu.cn

扫描关注

论文成果

当前位置: 王琰 >> 科学研究 >> 论文成果

Modeling photodegradation kinetics of organic micropollutants in water bodies: A case of the Yellow River estuary.

点击次数:

论文类型:期刊论文

发表时间:2018-01-31

发表刊物:Journal of hazardous materials

收录刊物:SCIE、EI、PubMed

卷号:349

页面范围:60-67

ISSN号:1873-3336

关键字:Photodegradation kinetics,Sulfamethoxazole and acyclovir,Sunlight attenuation,Yellow River estuary

摘要:Predicting photodegradation rate constants (k) of pollutants in water bodies is important for assessing their persistence and fate. This prediction used to be based on the k values determined under laboratory conditions that seldom consider underwater downward sunlight attenuation in the field. We studied a procedure to predict k taking the Yellow River estuary and two model chemicals (sulfamethoxazole and acyclovir) as a case. Models were developed for predicting underwater sunlight intensities from optically-active substances. Based on the predicted underwater sunlight intensities, hourly variation of k for the model compounds was predicted as a function of water depth, for a fresh water, an estuarine water and a seawater body in the estuary. Results show that photodegradation half-lives (t1/2) of the two compounds will be underestimated by dozens of times if underwater downward sunlight attenuation and intensity variation are not considered. Outdoor validation experiments show the maximum deviation between the predicted and measured k values is a factor of 2. The developed models can be employed to predict k of environmental chemicals in coastal water bodies once they are locally calibrated. Copyright © 2018 Elsevier B.V. All rights reserved.