王言磊

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Professor

性别:男

毕业院校:哈尔滨工业大学

学位:博士

所在单位:土木工程系

学科:结构工程

办公地点:辽宁省大连市高新区凌工路2号大连理工大学土木工程学院4号楼311室  116024

联系方式:Tel: 0411-84706493; Mob: 139420502六六; QQ: 12557297

电子邮箱:wangyanlei@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Strain and damage self-sensing of basalt fiber reinforced polymer laminates fabricated with carbon nanofibers/epoxy composites under tension

点击次数:

论文类型:期刊论文

发表时间:2018-10-01

发表刊物:COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING

收录刊物:SCIE

卷号:113

页面范围:40-52

ISSN号:1359-835X

关键字:Carbon nanotubes and nanofibers; Nanocomposites; Electrical properties; Mechanical properties

摘要:This study investigated the strain and damage self-sensing capabilities of basalt fiber reinforced polymer (BFRP) laminates fabricated with carbon nanofibers (CNFs)/epoxy composites subjected to tensile loadings. The conduction mechanisms based on the tunnel conduction and percolation conduction theories as well as the damage evolution were also explored. A compensation circuit with a half-bridge configuration was proposed. The results indicated the resistivity of the CNFs/BFRP laminates and CNFs/epoxy composites exhibited similar change rule, indicating that the conductive networks of CNFs/BFRP laminates were governed by CNFs/epoxy composites. With the increase of strain under monotonic tensile loading, the electrical resistance response could be classified into three stages corresponding to different damage modes. This confirmed CNFs/BFRP laminates have excellent self-sensing abilities to monitor their internal damages. Moreover, stable and repeatable strain self-sensing capacity of the CNFs/BFRP laminates was verified under cyclic tensile loading because the electrical resistance varied synchronously with the applied strain.