个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Professor
性别:男
毕业院校:哈尔滨工业大学
学位:博士
所在单位:土木工程系
学科:结构工程
办公地点:辽宁省大连市高新区凌工路2号大连理工大学土木工程学院4号楼311室 116024
联系方式:Tel: 0411-84706493; Mob: 139420502六六; QQ: 12557297
电子邮箱:wangyanlei@dlut.edu.cn
Effect of specimen thicknesses on water absorption and flexural strength of CFRP laminates subjected to water or alkaline solution immersion
点击次数:
论文类型:期刊论文
发表时间:2019-05-30
发表刊物:CONSTRUCTION AND BUILDING MATERIALS
收录刊物:SCIE、EI
卷号:208
页面范围:314-325
ISSN号:0950-0618
关键字:Carbon Fiber Reinforced Polymer (CFRP); Specimen thickness; Durability; Accelerated method; Water uptake; Flexural strength
摘要:In this paper, an experimental research was undertaken to investigate the effect of specimen thicknesses on water absorptions and flexural strengths of wet lay-up CFRP laminates subjected to distilled water or alkaline solution immersion up to 180 days. Test results showed that the water uptake and flexural strength retention of CFRP laminates were significantly affected by the adopted specimen thickness. For the same aging time, the water uptake of CFRP laminates decreased in the early stage of immersion and increased in the later stage of immersion with the increase of specimen thickness. Meanwhile, the flexural strength retention generally increased as specimen thickness increased. In addition, a new thickness-based accelerated method for hygrothermal aging test of CFRP laminates was proposed. The accelerated factors of the water uptake and flexural strength retention of CFRP laminates were theoretically deduced. The proposed analytical model of accelerated factors was verified with current test data, and then applied to predict long-term properties of CFRP laminates. Compared with the traditional temperature-based accelerated method, the new thickness-based accelerated method is much easier to apply to predict long-term properties of CFRP laminates with good accuracy. (C) 2019 Elsevier Ltd. All rights reserved.